

Predicting Software Assurance Using
Quality and Reliability Measures

Carol Woody, Ph.D.
Robert Ellison, Ph.D.
William Nichols, Ph.D.

December 2014

TECHNICAL NOTE
CMU/SEI-2014-TN-026

CERT Division/SSD

http://www.sei.cmu.edu

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-
low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Team Software ProcessSM and TSPSM are service marks of Carnegie Mellon University.

DM-0002014
.

CMU/SEI-2014-TN-026 | i

Table of Contents

Acknowledgments vii

Executive Overview ix

Abstract xiii

1 Introduction 1

2 Assurance 3
2.1 DoD Assurance Case Example 4

3 Analysis of Quality Cases 7
3.1 SEI Data 7
3.2 Defect Prediction Models 8
3.3 In-Depth Analysis: Security Focused Example (Project A1) 11

3.3.1 Security Example Results 11
3.3.2 Security Example Discussion 12
3.3.3 Security Example Summary 12

3.4 In-Depth Analysis: Safety-Focused Examples (Projects D1, D2, D3) 12
3.4.1 Safety Examples Process Approach 13
3.4.2 Safety Examples Discussion 17
3.4.3 Safety Examples Summary 17

4 Assurance and Finding Defects 19
4.1 Case Study: Apple Coding Vulnerability 19
4.2 Case Study: Heartbleed Vulnerability 21

5 Other Data Sources: Security, Quality, and Reliability 25
5.1 Quality Practices 25

5.1.1 Design and Engineering Defects 25
5.1.2 Capers Jones Software Quality Survey 26
5.1.3 Consortium for IT: Software Quality (CISQ) 26

6 Planning for Improved Security and Quality 29
6.1 Next Steps 30

Appendix A: Relationship Between Vulnerabilities and Defects, a Brief Summary of the
Literature 31

Appendix B: Quality Cannot Be Tested In 35

Bibliography 38

CMU/SEI-2014-TN-026 | ii

CMU/SEI-2014-TN-026 | iii

List of Figures

Figure 1: Hardware and Software Failures Over Time ix

Figure 2: Confidence Gap 3

Figure 3: NR-KPP Claim 5

Figure 4: Confidence Reviews 6

Figure 5: Post Release Safety-Critical or Security Defects Compared to Total Defects 8

Figure 6: “Tank and Filter” Quality Tracking Model 9

Figure 7: Defect Removal Densities During Development 10

Figure 8: Quality and Security-Focused Workflow 14

Figure 9: Testing Reliability Results for the Largest Project 16

Figure 10: Re-Fix Rate for the Largest Project 16

Figure 11: Operational Reliability for the Largest Product 17

Figure 12: Heartbleed Protocol 22

Figure 13: CISQ Assurance 28

Figure 14: Distribution of Faulty and Vulnerable Files in Firefox 2.0 31

Figure 15: Boxplot of V/D% 33

Figure 16: Defect Find and Fix Times from Xerox 35

Figure 17: Notional Test Coverage Along Multiple Dimensions 37

CMU/SEI-2014-TN-026 | iv

CMU/SEI-2014-TN-026 | v

List of Tables

Table 1: Selected TSP Project Data 7

Table 2: Percentage of Defects Removed by Phase for Three Projects 15

Table 2: Vulnerability Classes 25

Table 3: Quality Practices Study 26

Table 4: A CISQ Security Rule 27

Table 5: Vulnerability Density Versus Defect Density Measured for Some Software Systems 32

Table 6: Vulnerability Density in OpenBSD Versions 2.3 - 3.7 33

Table 7: Vulnerability Density Results from 2008 Study 33

Table 8: Typical Defect Removal Effectiveness 37

CMU/SEI-2014-TN-026 | vi

CMU/SEI-2014-TN-026 | vii

Acknowledgments

We would like to thank Kevin Fall, chief technical officer of the Software Engineering Institute
(SEI), for providing the initial research funding that allowed us to explore this topic area. We
would particularly like to thank the organizations whose data we used for our analysis. Their input
provided insights into the processes and measurement used to produce the desired results in secu-
rity and safety that could not have been achieved by just studying the raw data. We would also
like to thank the participants who attended our challenge problem workshop in August 2014.
Their thoughtful feedback helped us improve our analysis and structure our material in a coherent
and useful manner. Finally, we would like to thank Julia Allen and Robert Ferguson for reviewing
this report and offering helpful suggestions for improvement.

CMU/SEI-2014-TN-026 | viii

CMU/SEI-2014-TN-026 | ix

Executive Overview

Processes used for improving the quality of a system emphasize reducing the number of possible
defects, but quality measures and the techniques applied to improved quality can vary in effective-
ness and importance depending on the consequences of a defect and whether the measures and
techniques are applied to hardware or software. Considerable experience exists on measuring
hardware quality. For example, the mean time between failures is often used to measure the qual-
ity of a hardware component. Consistently long periods between failures is evidence of general
hardware reliability.

For measuring safety, the mean time between failures is not sufficient. We need to identify and
mitigate defects that could create hazardous conditions, which could affect human life. For secu-
rity, the consideration of impact also applies. Voting machine quality includes accurate tallies, but
also includes mitigating design defects that could enable tampering with the device.

There is an underlying assumption that a hardware device is perfectible over time. A reduction in
known defects improves the quality of a hardware device. A comparison of the failure distribu-
tions for hardware and software shows that the same reasoning does not apply to the reliability or
security of a software component. The bathtub curve shown in Figure 1 illustrates the failure dis-
tribution for hardware failures. This curve consists of three parts: a decreasing failure rate (of
early failures), a constant failure rate (of random failures), and an increasing failure rate (of wear-
out failures) over time. Defect modeling of hardware failures can identify defects that could be
reduced by manufacturing and design changes.

A simple defect model is often an enumeration of development errors after they have occurred.
But a software system that has had no security or reliability failures is not necessarily secure or
reliable. The defects appear only when specific operating conditions arise. The failure distribution
curve for software, also shown in Figure 1, reflects changes in operational conditions that trigger
defects as well as new faults introduced by software upgrades. The reduction of errors between
updates can lead system engineers to make predictions for a system based on the false assumption
that software is perfectible over time. The assumption should rather be that complex software sys-
tems are never error-free.

Figure 1: Hardware and Software Failures Over Time1

1 [Pan 1999]

CMU/SEI-2014-TN-026 | x

The 2005 Department of Defense Guide for Achieving Reliability, Availability, and Maintainabil-
ity (RAM) noted that known defects are not a good predictor of software reliability. Too little reli-
ability engineering was given as a key reason for the reliability failures by the DoD RAM guide.
This lack of reliability engineering was exhibited by

 failure to design in reliability early in the development process

 reliance on predictions (use of reliability defect models) instead of conducting engineering
design analysis

Improved software reliability starts with understanding that the characteristics of software failures
require analysis techniques distinct from those used for hardware reliability.

Software security shares many of the same challenges as software quality and reliability. Model-
ing security defects for software systems does not provide a prediction capability. We need to as-
sess how engineering choices proactively reduce the likelihood of security faults. Just removing
defects does not ensure improved security, since defects are identified and prioritized based on
specified requirements and effective security is dependent on operational execution.

The approach recommended for software reliability in the DoD RAM guide is applicable to secur-
ing software systems. A quality measure for an engineering decision can be based on how that
choice affects the injection or removal of defects. For example, a review of a hardware disk drive
design would check the techniques used manage read errors or surface defects. A review of a soft-
ware design might need to verify that the software engineering design choices sufficiently miti-
gate a fault. Hardware reliability, such as for a disk drive, can draw on documented design rules
based on actual use. Software reliability has not matured to the same state. A description of the
specific engineering decisions and the justification of those choices must be provided for the re-
view. An assurance technique called an assurance case provides a way to document the reasoning
and evidence that led to engineering choices, making them transparent for further analysis and
verification.

The SEI has detailed size, defect, and process data for over 100 software development projects.
The projects include a wide range of application domains and project sizes. Five of these projects
focus on specific security- and safety-critical outcomes. This report includes a discussion of how
these five projects could provide potential benchmarks for ranges of quality performance metrics
(e.g., defect injection rates, removal rates, and test yields) that establish a context for determining
very high quality products and predicting safety and security outcomes.

Many of the Common Weakness Enumerations (CWEs),2 such as the improper use of program-
ming language constructs, buffer overflows, and failures to validate input values, can be associ-
ated with poor quality coding and development practices. Improving quality is a necessary condi-
tion for addressing some software security issues.

Demonstrating that improving quality can improve security requires more careful analysis. Capers
Jones has analyzed over 13,000 projects for the effects of general practices such as inspections,
testing, and static analysis, have on improving software quality [Jones 2012]. His analysis shows

2 cwe.mitre.org

CMU/SEI-2014-TN-026 | xi

that a combination of techniques is best. Appendix B discusses why quality cannot be tested in.
Static analysis has limitations that can be compounded by the lack of other quality practices such
as inspections. This report includes a discussion of Heartbleed, a vulnerability in OpenSSL3 (an
open source implementation of the secure socket layer protocol). Heartbleed is a good example of
the limited effectiveness of current software assurance tools. Kupsch and Miller noted that,
“Heartbleed created a significant challenge for current software assurance tools, and we are not
aware of any such tools that were able to discover the Heartbleed vulnerability at the time of an-
nouncement” [Kupsch 2014]. But Heartbleed, which was caused by a failure to validate input
data, would be expected to be found by a good code inspection.

The underlying problem is that neither testing nor static analysis can be used to evaluate engineer-
ing decisions. The Consortium for IT: Software Quality (CISQ) has developed specifications for
automating the measurement of software reliability, security, performance efficiency, and main-
tainability [CISQ 2012]. The CISQ assessment of the structural quality of software is based on ap-
plying rules of good coding practices (Quality Rules). The CISQ approach, like static analysis, is
based on the analysis of developed source code; but there is a significant difference between using
the Quality Rules and applying static analysis. The Quality Rules incorporate software engineer-
ing recommendations, such as the use of vetted libraries that prevent specific vulnerabilities, ra-
ther than identifying defects after they have been injected.

Our research suggests that implementing systems with effective operational security requires in-
corporating both quality and security considerations throughout the lifecycle. Predicting effective
operational security requires quality and reliability evidence and security expert analysis in each
step of the lifecycle. If defects are measured, 1-5% of defects should be considered to be security
vulnerabilities. It is also feasible that when security vulnerabilities are measured, code quality can
be estimated by considering security vulnerabilities to be 1-5% of the expected defects.

This report provides further analysis of the opportunities and issues involved in connecting qual-
ity, reliability, and security. Because our sample set is small, further evaluation is needed to see if
the patterns suggested by our analysis continue to hold.

3 CVD id CVE-2014-0160 (MITRE; “National Vulnerability Database”) http://web.nvd.nist.gov/view/vuln/detail?vul-

nId=CVE-2014-0160

CMU/SEI-2014-TN-026 | xii

CMU/SEI-2014-TN-026 | xiii

Abstract

Security vulnerabilities are defects that enable an external party to compromise a system. Our re-
search indicates that improving software quality by reducing the number of errors also reduces the
number of vulnerabilities and hence improves software security. Some portion of security vulner-
abilities (maybe over half of them) are also quality defects. This report includes security analysis
based on data the Software Engineering Institute (SEI) has collected over many years for 100 soft-
ware development projects. Can quality defect models that predict quality results be applied to se-
curity to predict security results? Simple defect models focus on an enumeration of development
errors after they have occurred and do not relate directly to operational security vulnerabilities,
except when the cause is quality related. This report discusses how a combination of software de-
velopment and quality techniques can improve software security.

CMU/SEI-2014-TN-026 | xiv

CMU/SEI-2014-TN-026 | 1

1 Introduction

The Common Weakness Enumeration (CWE)4 is a list of over 900 software weaknesses that re-
sulted in software vulnerabilities exploited by attackers. Many of them, such as the improper use
of programming language constructs, buffer overflows, and failures to validate input values, can
be associated with poor quality coding and development practices. Quality would seem to be a
necessary condition for software security.

A reduction in known software defects is not necessarily a predictor for either improved security
or reliability. For reliability, we can use statistical measures, such as the mean time between fail-
ures (MTBF), for hardware reliability since hardware failures are often associated with wear and
other errors that are often eliminated over time. But software weaknesses, such as those listed in
the CWE, exist when a software system is deployed; they may not be known for some time be-
cause the conditions, which may require external attacks and could cause a failure, have not yet
occurred (in either testing or in operation). A system that has had no reliability or security failures
is not necessarily reliable or secure when the threat or use environment changes.

Software security cannot be confirmed because there is no current means for establishing that all
vulnerabilities have been removed. Confirmation of reliability faces a similar problem. The 2005
Department of Defense Guide for Achieving Reliability, Availability, and Maintainability (RAM)
noted that known reliability defects are not a good predictor for software reliability. Too little reli-
ability engineering was given as a key reason for the reliability failures by the DoD RAM guide.
This lack of reliability engineering was exhibited by

 failure to design-in reliability early in the development process

 reliance on predictions (use of reliability defect models) instead of conducting engineering
design analysis

Defect models that predict quality could be applied to predicting security if all security vulnerabil-
ities were quality related. However, a simple defect model is often an enumeration of develop-
ment errors after they have occurred. In practice, defect tracking is not consistently performed.
Too few projects track defects prior to system and integration testing. Most Agile development
projects do not consider anything to be a defect until the code is submitted for integration. Defect
tracking in system testing and integration can be inconsistent and available data is often depend-
ent on the development methodology in use (waterfall, Lean, SCRUM, etc.) and the level of data
tracked as part of the development project. Removing defects could improve our confidence that
the system has improved security, but we need to base that judgment on concrete evidence and not
just on opinions of the developers or validators.

Software assurance, defined as the level of confidence we have that a system behaves as expected
and the security risks associated with the business use of the software are acceptable, would be
supported by effective quality and reliability predictions. Software assurance techniques can be

4 cwe.mitre.org

CMU/SEI-2014-TN-026 | 2

used to assemble evidence that should increase our confidence that a system’s behavior will be
valid (including expected security). The strength of a software security assurance claim must de-
pend, in part, on an assessment of the engineering decisions that support it (comparable to reliabil-
ity) and, in part, by the evidence that defects have been removed (comparable to quality).

The use of existing standards that address software assurance should also support claims of qual-
ity, reliability, and security. There are many recommendations, best practices, and standards, but,
to date, limited research confirms the effectiveness of them with respect to software quality, relia-
bility, or security. NIST 800-53 has hundreds of practices recommended for federal agencies and
is seeking feedback on results. Microsoft’s Security Development Lifecycle5 emphasizes prevent-
ing the creation of vulnerabilities and provides data from their experience to support use in prod-
uct development and sustainment, but use by other organizations has not been validated. The
Build Security In Maturity Model6 (BSIMM) contains information about security initiatives in 67
organizations, but this information is focused at an organizational level and has not been associ-
ated with publicly available operational results.

This report includes an analysis of various aspects of quality and reliability in an effort to deter-
mine their applicability to predicting operational security results. There are no clear answers, but
several analysis threads provide strong indicators of potential value and warrant further considera-
tion. This report is intended to inform executives, managers, and engineers involved in technology
selection and implementation about the value of quality and reliability data in supporting security
needs.

Section 2 describes the software assurance case and its value in assembling evidence from a range
of sources to support a desired outcome (claim). In a sense, this report is the start of an assurance
case for predicting security from quality and reliability data.

Section 3 describes five projects that delivered excellent security or safety-critical results while
focusing on high-quality delivery. The way in which these results were obtained provides useful
insights into relationships among quality, reliability, and security.

Section 4 describes two case studies of software failures in which quality and security results ap-
pear to be related.

Section 5 describes other efforts underway to evaluate quality and security that are providing use-
ful results.

Section 6 summarizes the current information we have that links quality and reliability to security
and the feasibility of predicting security results. This section also proposes future research needs
for others to consider.

5 https://www.microsoft.com/security/sdl/default.aspx?mstLoc

6 http://bsimm.com/

CMU/SEI-2014-TN-026 | 3

2 Assurance

There is always uncertainty about a software system’s behavior. At the start of development, we
have a very general knowledge of the operational and security risks that might arise as well as the
security behavior that is desired when the system is deployed. A quality measure of the design and
implementation is the confidence we have that the delivered system will behave as specified. De-
termining that level of confidence is an objective of software assurance, which is defined by the
Committee on National Security Systems [CNSS 2009] as

Software Assurance: Implementing software with a level of confidence that the software
functions as intended and is free of vulnerabilities, either intentionally or unintentionally de-
signed or inserted as part of the software, throughout the lifecycle.

At the start of a development cycle, we have a limited basis for determining our confidence in the
behavior of the delivered system; that is, we have a large gap between our initial level of confi-
dence and the desired level of confidence. Over the development lifecycle, we need to reduce that
confidence gap, as shown in Figure 2, to reach the desired level of confidence for the delivered
system.

Figure 2: Confidence Gap

With existing software security practices, we could apply source-code static analysis and testing
toward the end of the lifecycle. For the earlier lifecycle phases, we need to evaluate how the engi-
neering decisions made during design affect the injection or removal of defects. Reliability de-
pends on identifying and mitigating potential faults. Software security failure modes are exploita-
ble conditions, such as unverified input data. A design review should confirm that the business
risks linked to fault, vulnerability, and defect consequences have been identified and mitigated by
specific design features. Software-intensive systems are complex; it should not be surprising that

CMU/SEI-2014-TN-026 | 4

the analysis done, even by an expert designer, could be incomplete, could overlook a risk, or
could make simple but invalid development and operating assumptions.

Our confidence in the engineering of software should be based on more than opinion. If we claim
the resulting system will be secure, our confidence in the claim will depend on the quality of evi-
dence provided to support the claim, on confirmation that the structure of the argument about the
evidence is appropriate to meet the claim, and that sufficient evidence is provided. If we claim
that we have reduced vulnerabilities by verifying all inputs, then the results of extensive testing
using invalid and valid data provides evidence to support the claim.

We refer to the combination of evidence and argument as an assurance case.7

Assurance case: a documented body of evidence that provides a convincing and valid argu-
ment that a specified set of critical claims about a system’s properties are adequately justi-
fied for a given application in a given environment.

An analysis of an assurance case does not evaluate the process by which an engineering decision
was made. Rather it is a justification of a predicted result based on available information. An as-
surance case does not imply any kind of guarantee or certification. It is simply a way to document
the rationale behind system design decisions.

Doubts play a significant role in justifying claims. During a review, an assurance case developer
is expected to justify through evidence that a set of claims have been met. A typical reviewer
looks for reasons to doubt the claim. For example, a reviewer could

 Doubt the claim. There is information that contradicts a claim.

 Doubt the argument. For example, the static analysis that was done does not apply to a
claim that a specific vulnerability has been eliminated or the analysis did not consider the
case in which the internal network has been compromised.

 Doubt the evidence. For example, the security testing or static analysis was done by inexpe-
rienced staff or the testing plan did not give sufficient consideration to recovery following a
compromise.

Quality and reliability can be considered potential evidence to be incorporated into an argument
about predicted software security. The remainder of this section describes an example assurance
case and the ways in which confidence is increased as evidence is assembled.

2.1 DoD Assurance Case Example

An assurance case can be developed for a system with software assurance as a segment of the ar-
gument. Implicit assurance cases appear in all DoD system acquisitions. Key performance param-

7 Assurance cases were originally used to show that systems satisfied their safety-critical properties. For this use,

they were (and are) called safety cases. The notation and approach used in this report have been used for over
a decade in Europe to document why a system is sufficiently safe [Kelly 1998, Kelly 2004]. The application of
the concept to reliability was documented in an SAE Standard [SAE 2004]. In this report, we extend the concept
to cover system security claims.

CMU/SEI-2014-TN-026 | 5

eters (KPPs) are the system characteristics essential for delivery of an effective military capabil-
ity. All DoD projects have some number of KPPs to satisfy to be considered acceptable from an
operational perspective. For example, any DoD system that must send or receive information ex-
ternally is required to fulfill the Net-Ready KPP (NR-KPP), which requires that it continuously
provide survivable, interoperable, secure, and operationally effective information exchanges, one
of the security characteristics shown in Figure 3.

Figure 3: NR-KPP Claim

When performing an assurance case analysis of a completed design, the outcome is rather black
and white: either design artifacts are complete and sufficient or they are not. But our confidence in
a proposed approach can be considered at various points in the system development lifecycle as
show in Figure 4. We need a target for such reviews. How do we determine we are making pro-
gress towards that target?

The objective in this example is having sufficient confidence that the NR-KPP claim has been
met. Fairly early in an acquisition lifecycle, we need to at least outline how we plan to justify that
claim. What evidence will we need to eventually provide? What is the argument that such evi-
dence justifies the claim? For functional claims, testing often provides such evidence and success-
ful unit tests can show we are making progress toward meeting the functional claims at delivery.
A series of failed functional tests would raise doubts about the claims.

Our confidence in the NR-KPP claim increases as doubts raised during the reviews are resolved or
as the argument and evidence required for desired assurance are revised and improved. We create
a confidence map from the doubts raised; resolving them increases our level of confidence in the
claim.

CMU/SEI-2014-TN-026 | 6

Figure 4: Confidence Reviews

The next section describes ways in which quality and reliability evidence was assembled to evalu-
ate how selected projects achieved good security and safety-critical results.

CMU/SEI-2014-TN-026 | 7

3 Analysis of Quality Cases

3.1 SEI Data8

The SEI has detailed size, defect, and process data for more than 100 software development pro-
jects. This inventory is growing and may double in size in the near future. The projects include a
wide range of application domains. This data supports potential benchmarks for ranges of quality
performance metrics (e.g., defect injection rates, removal rates, and test yields) that establish a
context for determining very high quality products. The following types of information are availa-
ble for each project:

 summary data that includes project duration, development team size, cost (effort) variance,
and schedule variance

 detailed data that includes the planned and actual for each product component: size (added
and modified lines of code [LOC]), effort by development phase, defects injected and re-
moved in each development phase, and date of lifecycle phase completion

A subset of this data is provided by high-quality projects reporting few or no defects found in pro-
duction. Five of these projects were identified as successful safety-critical or security-critical im-
plementations and have been selected for our analysis. These selected projects range in size from
30,000 to 3,000,000,000 LOC and include safety-critical medical devices, the Selective Service
registration system, and a system subjected to a security audit. Quality for these selected projects
was evaluated using software defect injection and removal data from quality modeling capabilities
that implemented the SEI Team Software Process (TSP) [Davis 2003]. We analyzed this data to
identify possible correlations between modeling quality and security, as well as unique character-
istics used for these systems that led to a minimal number of defects discovered in the operational
production environment.

Table 1: Selected TSP Project Data

Project Type Post Release Security or
Safety Critical Defects

Defect Density [Defects/MLOC] Size [MLOC]

D1 Safety Critical 20 46.1 2.8

D2 Safety Critical 0 4.4 0.9

D3 Safety Critical 0 9.2 1.3

A1 Secure 0 91.7 0.6

T1 Secure 0 20 0.03

Four of these projects reported no post release safety-critical or security defects in the first year of
operation. One had twenty reported defects in operation. Three projects were implemented with
very high quality (20 or less defects per million lines of code [MLOC]). According to Capers

8 Data was drawn from the Team Software Process (TSP) work (http://www.sei.cmu.edu/tsp/index.cfm).

CMU/SEI-2014-TN-026 | 8

Jones [Jones 2011], the average defect level in the U.S. is 0.75 defects per function point or 6000
per MLOC for a high-level language. Very good levels would be 600 to 1000 defects per MLOC
and exceptional levels would be below 600 defects per MLOC.

Figure 5: Post Release Safety-Critical or Security Defects Compared to Total Defects

Tracking defects at the necessary level of detail requires that all steps in the development lifecycle
are tooled to capture metrics. All participants in the lifecycle share a common understanding of
what constitutes a defect and how it is to be handled. Participants in each step of the process are
focused on identifying and addressing defects. To develop comparisons among projects and eval-
uate quality and security results the following are needed:

 a measure of defects identified and removed during each phase of the lifecycle

 a measure of defect data after code completion (Specifically, defects are tracked and rec-
orded accurately during development, internal or independent verification and validation
[V&V], production use, and ideally during build and integration.)

 a measure of operational program size (e.g., source LOC or function points) that can be used
as a normalization factor for released systems so that a comparable level of quality across
different software systems can be established

3.2 Defect Prediction Models

Defect prediction models should be developed from measures of defect discovery in prior pro-
jects. That way, the number of defects can be estimated at the very beginning of the project and
updated as defect discovery and removal information is found. Defect prediction models that are
first applied in testing have wide error variations and are not useful in judging overall product
quality.

CMU/SEI-2014-TN-026 | 9

Defect prediction models are typically informed by measures of the software product at a specific
time, longitudinal measures of the product, or measures of the development process used to build
the product. Metrics typically used to analyze quality problems can include

 static software metrics, such as new and changed LOC, cyclomatic complexity,9 counts of
attributes, parameters, methods and classes, and interactions among modules

 defect counts, usually found during testing or in production, often normalized to size, effort,
or time in operation

 software change metrics, including frequency of changes, LOC changed, or longitudinal
product change data, such as number of revisions, frequency of revisions, numbers of mod-
ules changed, or counts of bug fixes over time

 process data, such as activities performed or effort applied to activities or development
phases

Many models currently in use rely on static or longitudinal product measures, such as code churn.
Other approaches use historic performance or experience based on defect injection and removal
(generally described using a “Tank and Filter” metaphor) to monitor and model the defect levels
during the development process.

Figure 6: “Tank and Filter” Quality Tracking Model

Low levels of defects in product use require that defects injected into the product must be re-
moved prior to use. We can estimate the level of remaining defects by estimating the injection
rates during development and the effectiveness of removal activities. The estimates can be based
on historic data and measures. Developers using TSP have accurately predicted their injection

9 http://en.wikipedia.org/wiki/Cyclomatic_complexity

CMU/SEI-2014-TN-026 | 11

3.3 In-Depth Analysis: Security Focused Example (Project A1)

The objectives of this project were to update and modernize the Selective Service System and sat-
isfy FISMA [NIST 2002] requirements. Based on the success of the implementation and a secu-
rity review performed by senior information security experts, the contractor, Advanced Infor-
mation Systems, received the Government Information Security Leadership Award (GISLA)
[Romo 2013].

The project preparation included ISC2-Certified Secure Software Lifecycle Professional Training10
for the staff. The developers implemented the following techniques:

“[D]evelopers should be supported by being provided with the necessary knowledge about
security vulnerabilities and how they can occur throughout the life cycle. This information
should be institutionalized into the way that developers do their work, by being built into the
types of quality checks [emphasis added] that get deployed as the software is developed,
whether it be on checklists for inspections or other approaches.” [Shull 2013]

Staff members were trained to recognize common security issues in development and required to
build this understanding into their development process. Metrics were collected using review and
inspection checklists along with productivity data. These metrics allowed staff to accurately pre-
dict the effort and quality required for future components using actual historical data.

3.3.1 Security Example Results

The implemented product contained a total of 570 defects (0.97 defects/KLOC), none of which
resulted in operational system downtime [Ratnaraj 2012]. The system passed all security audits
and had no reported vulnerabilities in production.

Leading indicators of software quality included 76% of components, which were defect free after
unit test and had a process quality index (PQI) of >0.37 for database components, >37% for mid-
dle tier components, and >0.25 for user interface components [Humphrey 2000]. With PQI values
above about 0.4, program modules are generally defect free. The PQI is a derived measure that
characterizes the quality of a software development process and is the product of five quality pro-
file component values:

1. Design quality is expressed as the ratio of design time to coding time.

2. Design review quality is the ratio of design review time to design time.

3. Code review quality is the ratio of code review time to coding time.

4. Code quality is the ratio of compile defects to a size measure.

5. Program quality is the ratio of unit test defects to a size measure.

10 https://www.isc2.org/CSSLP/Default.aspx

CMU/SEI-2014-TN-026 | 12

3.3.2 Security Example Discussion

Among the five projects selected for analysis, this project was the outlier with a higher measured
defect density. Although the production defect density of <0.1 defects/KLOC would normally be
considered to be quite good [Binder 1997], the level for this system is more than twice that of oth-
ers in the investigation set. The components are close to, but do not achieve the PQI level of
merit, which is generally considered to be >0.4 [Humphrey 2000]. The question then becomes
how this product achieves zero reported operational vulnerabilities. To answer that question, we
needed to analyze the data further.

Given the product size of approximately 600 KLOC and 0.1 defects/KLOC in production, we in-
fer approximately 60 defects were discovered in production. Using the higher end of the vulnera-
bility/defect range reported from various sources [Alhazmi, Malaiya, and Ray 2007; Alhazmi and
Malaiya 2008], 5% to 10%, or 3 to 6 vulnerabilities, should be expected. However, the lower end
of the range, 1% or below as observed among systems known to use secure development prac-
tices, would project <1 escaped vulnerability.

3.3.3 Security Example Summary

The data from this project indicates that the combination of measured defect density and size is
most consistent with no further vulnerabilities identified if we use a vulnerability-to-defect ratio
of approximately 1% or lower. The observation of zero vulnerabilities in this system tends to sup-
port the conjecture that systems built with a deliberate focus on quality, training to recognize se-
curity issues, and evidence of sufficient quality to verify the practice, can use the 1% ratio as a
measured defect density to estimate vulnerabilities.

3.4 In-Depth Analysis: Safety-Focused Examples (Projects D1, D2, D3)

Three cases in our data set involve medical diagnostic devices. The devices are used for medical
analysis in areas such as immunoassay and hematology. The sources for this project summary in-
clude the data recorded by the teams during their time working on the project, their cycle post
mortem (retrospective) reports, and a summary presented at the TSP Symposium 2012.11

Medical devices are regulated by the FDA, subject to FDA 21 CFR 820 Quality System Regula-
tion,12 which is a basic regulatory requirement with which all manufacturers of medical devices
distributed in the U.S. must comply. The regulation includes the Quality System Regulation
(QSR) and Good Manufacturing Practices (GMP).

The QSR includes requirements related to the methods used in and the facilities and controls used
for designing, purchasing, manufacturing, packaging, labeling, storing, installing, and servicing
medical devices. Manufacturing facilities undergo FDA inspections to assure their compliance

11 Grojean, Carol & Robert Musson, RSM 2.5 Project Results (private report).

12 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=820

CMU/SEI-2014-TN-026 | 13

with QSR requirements. REGULATION Subpart B—Quality System Requirements Sec. 820.22
Quality Audit includes the following requirement:

Each manufacturer shall establish procedures for quality audits and conduct such audits to
assure that the quality system is in compliance with the established quality system require-
ments and to determine the effectiveness of the quality system.

The QSR includes design controls that must be demonstrated during the design and development
of the device. Additional guidance is provided by General Principles of Software Validation; Fi-
nal Guidance for Industry and FDA Staff [FDA 2002].

The software projects in this study were of size 2.8 MLOC, 1.3 MLOC, and 0.9 MLOC. The larg-
est of the three projects included a large body of legacy code that was in test for an extended time
(>8 months) because defect detection rates were not decreasing.

3.4.1 Safety Examples Process Approach

Each of the projects included both new development and enhancements to existing code. Alt-
hough the process steps were similar, the parameters for the overall development rate and defect
injection rates differed among the projects. All projects included the use of static code analysis
tools to establish defect levels, primarily for the analysis of legacy code. All projects included
checklist-driven reviews of requirements, designs, code, and test cases. Peer inspection processes
(design inspection and code inspection) included a safety specialist whose primary role was to
evaluate defects for potential safety implications.

The general workflow for the projects was similar to that shown in Figure 8 for quality and secu-
rity, where each process step includes peer reviews and expert inspection (safety or security).

CMU/SEI-2014-TN-026 | 14

Figure 8: Quality and Security-Focused Workflow

In addition, static analysis tools were used for legacy code as needed after each round of V&V.
Legacy modules with defects in the V&V phase were subjected to code inspections for defect
identification and removal. Two commercial static analysis tools were used (from Coverity and
Klocwork). In the smallest of the three projects, the static analysis tools were applied prior to code
review to provide an indicator of potential defects.

Test coverage tools were used for test case development. In addition, test cases were reviewed by
the developer and inspected by peers. In practice, 80% of defects that test cases were designed to
identify were removed prior to test-case execution. Testing was used to confirm defect removal,
not to find defects.

CMU/SEI-2014-TN-026 | 15

The teams performed detailed planning for each upcoming code release cycle and confirmation
planning for the overall schedule. For the project with the largest code base, a Monte Carlo simu-
lation was used to identify a completion date within the 84th percentile (i.e., 84% of the project
simulated finished earlier than this completion date) and included estimates for

 incoming software change requests (SCRs) per week

 triage rate of software change requests

 percentage of SCRs closed

 development work (SCR assigned) for a cycle

 SCR per developer (SCR/Dev) per week

 number of developers

 time to develop of test protocols

 software change requests per safety verifier & validator (SCR/SVV) per week

 number of verification persons

The team then committed to complete the agreed work for the cycle, planned what work was be-
ing deferred into future cycles, and projected that all remaining work would still fit the overall de-
livery schedule. All defects were tracked throughout the projects in all phases (injection, discov-
ery, and fix data). Developers used their actual data to plan subsequent work and reach agreement
with management on the schedule, content, process used, and resources required so that the plan
could proceed without compromising the delivery schedule.

For the development phases, Table 2 lists the percentage of defects removed by phase (as rec-
orded) for three projects.

Table 2: Percentage of Defects Removed by Phase for Three Projects

Phase Product 1

0.9 MLOC

Product 2,1.3
MLOC

Code and Design
Defects Only

Product 3

3.0 MLOC

Static Analysis 4% 0% 0%

Unit Test 8% 17% 26%

Personal Review 24% 23%

27%

Peer Inspection 38% 60% 80%

Integration Test 32%

In product one, 8% of reported defect fixes failed later verification. This failure represents a
“breakage” or “bad fix” ratio. In product two, the developers spent 2/3 as much time in reviews as
in development and 40% as much effort in design as code.

For product three, the largest software product, inspections averaged approximately 170
LOC/hour with a defect identification rate of roughly 0.4 defects per hour and a defect removal

CMU/SEI-2014-TN-026 | 16

density of 4 defects/KLOC. The inspection percentage of total defects identified ranged from 40%
to 80%. Typical component defect density was under 1 defect per KLOC entering the V&V
phase. Few defects were recorded by the safety inspectors.

The largest of the three projects was completed in 12 months, within 4% of the planned schedule.
The focus on quality also improved product reliability. One measure of the reliability improve-
ment for the product was the mean test cycles between defects. This measure grew by a factor of
10 over the 12 months as shown in Figure 9.

Figure 9: Testing Reliability Results for the Largest Project

In the same time period, the portion of defect fixes that failed verification also declined by
roughly a factor of 2 as shown in Figure 10.

Figure 10: Re-Fix Rate for the Largest Project

With several hundred units fielded, the mean time between operational failures increased with
each subsequent product release as shown in Figure 11.

CMU/SEI-2014-TN-026 | 17

Figure 11: Operational Reliability for the Largest Product

3.4.2 Safety Examples Discussion

Personal review and peer inspections provided the primary means of defect removal. Tools (e.g.,
static analysis tools) were used primarily to confirm improvement. Programmers were trained to
identify defects and expected to not rely heavily on tools, but to use them as a confirmation. It
was reported that the use of the static analysis tools seems to contribute primarily to the identifica-
tion of “false” defects.

Although the percentage of defects found by testing were high, except for the smallest project,
few of the defects were found in the V&V phase. Over 90% of the defects had been removed prior
to test. This removal may have positively affected the high test yields because

1. large numbers of tests could be developed and run

2. tests were able to focus on appropriate types of defects, as the “nuisance” defects had already
been removed

The steps required to achieve lower levels of defects in test included design review and inspection
(to reduce injections), personal reviews, and peer inspections. Static analysis was applied primar-
ily to the legacy components.

The root cause analysis for identified defects indicated that most common defects associated with
“Level 1,” the highest severity category that would lead to a product recall, were found to have
been injected during the coding phase. For these projects, a focus on coding quality was deter-
mined to be an effective strategy for reducing the risk of released safety-critical defects. This type
of root cause analysis is useful because designers and developers have a tendency to repeat the
same types of mistakes, so defect removal efforts should be focused to offset these injections as
much as possible [Humphrey 2000].

3.4.3 Safety Examples Summary

These products focused on safety rather than security as the driving quality attribute. Like the se-
curity-focused projects, the development teams defined quality as the absence of defects. Also

CMU/SEI-2014-TN-026 | 18

like the security projects, designs, review checklists, and the test process were tailored for the
types of defects most important to the project.

The teams in this study developed and followed quality plans supported by explicit resource plans
and schedules and demonstrated by metrics. The plans included personal reviews, peer inspec-
tions, static analysis, and a rigorous test case development process, including code coverage anal-
ysis and inspection of the test cases. The teams were able to execute their plan by allocating and
agreeing to sufficient schedule time and effort, collecting measures throughout the process to
monitor their work. The results suggest that products with very low levels of defects are associ-
ated with a disciplined approach to planning quality activities, funding them properly, and faith-
fully implementing the plan.

CMU/SEI-2014-TN-026 | 19

4 Assurance and Finding Defects

Assuring that a software component has few defects also depends on assuring our capability to
find them. Positive results from security testing and static code analysis are often provided as evi-
dence that security vulnerabilities have been reduced, but the vulnerabilities discussed in this sec-
tion demonstrate that it is a mistake to rely on them as the primary means for identifying defects.
The omission of quality practices, such as inspections, can lead to defects that can exceed the ca-
pabilities of existing code analysis tools.

In the first example, an Apple coding vulnerability was likely the result of careless editing. The
second example is the Heartbleed vulnerability in OpenSSL13 (an open source implementation of
the secure socket layer protocol). Heartbleed is a good example of the limited effectiveness of cur-
rent software assurance tools. Kupsch and Miller noted that, “Heartbleed created a significant
challenge for current software assurance tools and we are not aware of any such tools that were
able to discover the Heartbleed vulnerability at the time of announcement” [Kupsch 2014]. There
are techniques that can be applied during development that would have prevented the injection of
these vulnerabilities.

4.1 Case Study: Apple Coding Vulnerability

In 2014, Apple fixed a critical security vulnerability that was likely caused by the careless use of
“cut and paste” during editing.14 The programmer embedded a duplicate line of code that caused
the software to bypass a block of code that verifies the authenticity of access credentials. Re-
searchers discovered this security flaw in iPhones and iPads; Apple confirmed that it also ap-
peared in notebook and desktop machines using the Mac OS X operating system. The vulnerabil-
ity is described in the National Vulnerability Database15 as follows:

Impact: An attacker with a privileged network position may capture or modify data in ses-
sions protected by SSL/TLS

Description: Secure Transport failed to validate the authenticity of the connection. This is-
sue was addressed by restoring missing validation steps.

This vulnerability would allow an attacker to use invalid credentials to gain access to any infor-
mation on the targeted device, such as email, financial data, and access credentials to other ser-
vices. A variety of standard quality techniques could have prevented or identified the defect. The
defect could have been identified during a personal review by the developer or during a more for-
mal and effective peer review.

13 CVD id CVE-2014-0160 (MITRE; National Vulnerability Database) http://web.nvd.nist.gov/view/vuln/detail?vul-

nId=CVE-2014-0160

14 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1266

15 http://nvd.nist.gov/

CMU/SEI-2014-TN-026 | 20

The faulty source code (with the error highlighted) is as follows:

static OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer

signedParams,uint8_t *signature, UInt16 signatureLen)

{OSStatus err;

 ...

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

 ...

fail:

 SSLFreeBuffer(&signedHashes);

 SSLFreeBuffer(&hashCtx);

 return err;}

There are a number of structured development techniques that, if applied consistently, could have
identified and possibly prevented this security coding defect as well. For example techniques such
as these:

 designing code to minimize branching and make it more predictable and testable

 architecting the design specification to become the basis for verifying code, including but not
limited to requirements analysis and test

These techniques are excellent strategic recommendations to improve quality in general, but are
neither effective nor efficient for detecting a mistake likely created by carelessness. The same
conclusion would apply to recommendations such as (1) provide better training for the coders, (2)
use line-of-code coverage test cases, or (3) use path-coverage test cases. Using static analysis to
identify dead code is a technique that could flag this defect, but the high false-positive rate for this
type of approach would make it a far more expensive effort than effective editing of code during a
personal review, an informal peer code review, or a formal peer code inspection.

The application of simple coding rules, such as “use braces for the body of an ‘if’, ‘for’, or ‘while’
statement” or automatically format the source code to reflect its structure so that the source ap-
pears as
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

could also increase the likelihood that such a defect is found during a review. However, a thor-
ough review is still needed.

CMU/SEI-2014-TN-026 | 21

4.2 Case Study: Heartbleed Vulnerability

The vulnerability referred to as Heartbleed occurred in the OpenSSL “assert” function, which is
the initiator of a heart-beat protocol to verify that the OpenSSL server is live. OpenSSL is an
open-source implementation of the secure socket layer (SSL) and transport layer security (TLS)
protocols used for securing web communications. Assert software sends a request with two pa-
rameters, a content string (payload) and an integer value that represents the length of the payload
it is sending. The expected response, if the OpenSSL connection is available, is a return of the
content string for the length specified.

The protocol assumes that the requested length of the payload returned is less than 65535 and less
than or equal to the payload length, but those assumptions are never verified by the responding
function.

A consequence of a violation of either of these limitations is that the request can trigger a data
leak. The XKCD16 comic shown in Figure 12 contains a simple explanation of what happens in
the code. Rather than a buffer overflow, we have what is called an over-read. The security risk is
that the additional data retrieved from the server’s memory could contain passwords, user identifi-
cation information, and other confidential information.

16 http://xkcd.com/1354/

CMU/SEI-2014-TN-026 | 22

This figure was reprinted with permission from xkcd.

Figure 12: Heartbleed Protocol17

17 This work is reprinted based on a licensed under a Creative Commons Attribution-NonCommercial 2.5 License

allowing reprint for non-commercial use as noted on the website http://xkcd.com/1354/

CMU/SEI-2014-TN-026 | 23

The defect appears to have been accidentally introduced by a developer in December 2011.
OpenSSL is widely used as a convenient (and free) tool. At its disclosure, some half a million of
the Internet's secure web servers certified by trusted authorities were believed to have been vul-
nerable to the attack.18 The new OpenSSL version repaired this vulnerability by including a
bounds check to make sure the payload length you specified is no longer than the data you actu-
ally sent.

The Security and Privacy article “Heartbleed 101” provides an excellent summary of why this
vulnerability was not found sooner, even with the use of static analysis tools [Carvalho 2014]. The
designer of each static analysis tool has to make trade-offs among the time required for the analy-
sis, the expert help required to support the tool’s analysis, and the completeness of the analysis.
Most static analysis tools use heuristics to identify likely vulnerabilities and to allow completion
of their analysis within useful times. Static analysis tools can be an effective technique for finding
some types of vulnerabilities, but the complexity of the OpenSSL code includes multiple levels of
indirection and other issues that simply exceeded the capabilities of existing tools to find the vul-
nerability [Carvalho 2014].

While the OpenSSL program is complex, the cause of the vulnerability is simple. The software
never verified the design assumption that the length of the content to be returned to the caller was
less than or equal to the length of the payload sent. Verifying that the input data meets its specifi-
cation is a standard activity performed for quality, not just for security.

This example also exhibits the realistic trade-offs that must occur between the effort associated
with applying a technique and the improved quality or security that is achieved (i.e., the efficiency
and effectiveness of the techniques relative to the type of defect). As noted by McGraw, incorpo-
rating automated code analysis into the development lifecycle encounters a number of issues of
scale [McGraw 2014]. Resource requirements have increased as tools have matured to cover a
broad range of vulnerabilities; it may not be feasible to run them on a desktop computer. Scans
alone can take two to three hours, which must be followed by analysis of the output to identify
and fix vulnerabilities. These resource requirements pose difficulty for some uses, such as Agile
development.

One of the benefits touted of Open Source, besides being free, has been the assumption that “hav-
ing many sets of eyes on the source code means security problems can be spotted quickly and an-
yone can fix bugs; you're not reliant on a vendor” [Rubens 2014]. However, the reality is that
without a disciplined and consistent focus on defect removal, security bugs and other bugs will be
in the code. The resources supporting OpenSSL had limited funding and inconsistent results. “No
one was ever truly in charge of OpenSSL; it just sort of became the default landfill for prototypes
of cryptographic inventions, and since it had everything cryptographic under the sun, it also be-
came the default source of cryptographic functionality.”19

18 http://en.wikipedia.org/wiki/OpenSSL

19 http://en.wikipedia.org/wiki/OpenSSL

CMU/SEI-2014-TN-026 | 24

The examples in this section show that quality practices, such as inspections and reviews of engi-
neering decisions, are essential for security. The associated software weaknesses in these exam-
ples should have been identified during development. Testing and code analyzers must be aug-
mented by disciplined quality approaches. Appendix A provides a summary of the research
available that connects vulnerabilities and defects. Though there is insufficient evidence to con-
firm a mathematical relationship, for estimating purposes, 1-5% of defects should be considered
to be possible vulnerabilities.

CMU/SEI-2014-TN-026 | 25

5 Other Data Sources: Security, Quality, and Reliability

A report by The National Supervisory Control and Data Acquisition (SCADA) Test Bed (NSTB)
program on common industrial control systems (ICS) security weaknesses noted that secure de-
sign and vulnerability remediation activities have been judged by many organizations as undoable
due to time, cost, and backward compatibility issues.

That observation by the NSTB report is supported by research conducted by IOActive in 2013
that focused on analyzing and reverse engineering the freely and publicly available firmware up-
dates for popular satellite communications (SATCOM) technologies manufactured and marketed
by well-known commercial firms. The IOActive report identified a number of critical firmware
vulnerabilities shown in Table 3.

Table 3: Vulnerability Classes

Backdoors Mechanisms used to access undocumented features or interfaces not in-
tended for end users

Hardcoded Credentials Undocumented credentials that can be used to authenticate in docu-
mented interfaces expected to be available for user interaction

Insecure Protocols Documented protocols that pose a security risk

Undocumented Protocols Undocumented protocols or protocols not intended for end users that pose
a security risk

Weak Password Resets A mechanism that allows resetting others’ passwords

The last two items in this table could require some security expertise, but the first three items are
well-known security vulnerabilities whose existence supports a claim that security received little
attention during development. For example, hardcoded credentials, is 7th on the 2011 CWE/SANS
Top 25 Most Dangerous Software Errors [Christey 2011]. Backdoors often appear when code in-
serted for debugging is not removed before deployment or when code is added for remote system
administration, but not properly secured.

5.1 Quality Practices

5.1.1 Design and Engineering Defects

Two safety examples show the importance of applying quality measures to engineering design de-
cisions.

Studies of safety-critical systems, particularly DoD avionics software systems, show that while
70% of errors in embedded safety-critical software are introduced in the requirements and archi-
tecture design phases [Feiler 2012], 80% of all errors are found only at system integration or later.
In particular, these errors are not found in unit testing. The rework effort to correct requirement
and design problems in later phases can be as high as 300 to 1,000 times the cost of in-phase cor-
rection; undiscovered errors are likely to remain after that rework.

Similar problems appeared with patient-controlled analgesia infusion pumps that are used to in-
fuse a pain killer at a prescribed basal flow rate. The U.S. Federal Drug Administration (FDA)

CMU/SEI-2014-TN-026 | 26

uses a premarket assessment to certify the safety and reliability of medical infusion pumps before
they are sold to the public. In spite of the FDA’s assessment, too many approved pumps exhibited
hardware and software defects in the field, leading to the death or injury of patients.20 From 2005
through 2009, 87 infusion pump recalls were conducted by firms to address identified safety prob-
lems. These defects had not been found during development by testing and other methods. Based
on an analysis of pump recalls and adverse events, the FDA concluded that many of the problems
appeared to be related to deficiencies in device design and engineering. The FDA revised its re-
market assessment to also consider defects in device design and engineering.

5.1.2 Capers Jones Software Quality Survey

Capers Jones has analyzed the effects that general practices, such as inspections and static analy-
sis, have on improving software quality [Jones 2012].

Table 4 lists the practices associated with poor quality software—less than a 25% success rate for
improving quality and good results—greater than a 95% success rate for improving quality. The
best results are associated with a combination of these techniques (i.e., the results of a combina-
tion of techniques increases the assurance associated with the design and implementation).

Table 4: Quality Practices Study

Poor Results Good Results

Testing as only form of
defect removal

LOC Metrics for quality
(omits non-code defects)

Formal inspections (re-
quirements, design, and
code)

Code static analysis

Informal testing and un-
certified test personnel

Failure to estimate quality
or risks early

Requirements modeling Testing specialists (certi-
fied)

Testing only by develop-
ers; no test specialists

Passive quality assurance
(< 3% QA staff)

Defect detection effi-
ciency (DDE) measure-
ments

Root-cause analysis

LOC metrics for quality
(omits non-code defects)

 Defect removal efficiency
(DRE) measurements

Active quality assurance
(> 3% SQA staff)

 Automated defect track-
ing tools

5.1.3 Consortium for IT: Software Quality (CISQ)

The Consortium for IT: Software Quality (CISQ) developed specifications for automating the
measurement of software reliability, security, performance efficiency, and maintainability that
complements static analysis [CISQ 2012]. The CISQ assessment of the structural quality of soft-
ware is based on applying rules of good coding practices (Quality Rules). The Quality Rules for
security are drawn from the CWE as examples of violations of good practices. For example,
CWE-129 is improper validation of an array index. CISQ selected CWE entries associated with
vulnerabilities in the CWE/SANS 25 and the OWASP Top Ten lists.21

20 U.S. Food and Drug Administration. Guidance for Industry and FDA Staff Total Product Life Cycle: Infusion

Pump Premarket Notification [510(k)] Submissions (Draft Guidance), 2010.

21 https://www.owasp.org/index.php/Top_10_2013-Top_10

CMU/SEI-2014-TN-026 | 27

The CWE describes multiple ways to mitigate many of the weaknesses. For example, consider
CWE-89, which is addressed by Rule 2 shown in Table 3 for your convenience (a subset of the
CISQ Security Rules). A Standard Query Language (SQL) injection occurs when user input is
used to construct a database query written in SQL. A poorly written input validation function can
enable an attacker to access, change, or add entries to the database by including SQL expressions
in the input provided.

An experienced programmer can write an input routine that identifies SQL expressions in the in-
put data. It is difficult to verify that a programmer-written routine prevents an SQL injection. In-
stead, the CISQ Quality Rule follows the CWE mitigation to use a vetted library or framework
that is known to mitigate this vulnerability. The validation of the use of such a library can be auto-
mated and does not require the coder to have extensive security expertise.

Table 5: A CISQ Security Rule

Issue Quality Rule Quality Measure Element

CWE-89: Improper Neutralization of
Special Elements used in an SQL
Command ('SQL Injection')

Rule 2: Use a vetted library or
framework that does not allow SQL
injection to occur or provides con-
structs that make this SQL injection
easier to avoid or use persistence
layers such as Hibernate or Enter-
prise Java Beans.

Measure 2: # of instances where
data is included in SQL statements
that is not passed through the neu-
tralization routines.

The CISQ approach, like static analysis, is based on the analysis of developed source code; but
there is a significant difference between using the Quality Rules and applying static analysis. The
Quality Rules incorporate software engineering recommendations, such as the use of vetted librar-
ies, thereby preventing specific vulnerabilities rather than identifying defects after they have been
created.

Given a high-risk and frequently used vulnerability such as an SQL injection, a designer might be
asked the following question during a security review:

Are you sure that SQL injections have been mitigated?

This assurance question is asked to determine the level of confidence the designer has that the
vulnerability has been mitigated. The designer could provide an argument and evidence to justify
that claim (i.e., an assurance case). The argument is based on an engineering decision to use a li-
brary of functions that have been shown to mitigate SQL Injections—CISQ Rule CWE-89 shown
in Table 5. This engineering choice is effective only if the implementation has used the library
functions. A tool provided by CISQ to scan the software provides evidence that the implementa-
tion has used the library functions. A graphical representation of the designer’s response appears
in Figure 13.

CMU/SEI-2014-TN-026 | 28

Figure 13: CISQ Assurance

Defect prevention typically depends on analysis that extends beyond a single software component.
As noted by OMG, detecting backdoors, cross-site scripting vulnerabilities (XSS), or unsecure dy-
namic SQL queries through multiple layers requires a deep understanding of all the data manipu-
lation layers as well as the data structure itself [OMG 2013]. Overall, security experts Greg
Hoglund and Gary McGraw believe that cross‐layer security issues account for 50% of all the se-
curity issues [Hoglund 2004].

A security analysis needs to consider what OMG refers to as system level analysis, the ability to
analyze all the different code units and different layers of technology to get a holistic view of the
entire integrated business application. System-level analysis allows us to visualize complete trans-
action paths from user entries, through user authentication and business logic, down to sensitive
data access.

CMU/SEI-2014-TN-026 | 29

6 Planning for Improved Security and Quality

The projects we analyzed pointed to a disciplined lifecycle approach with quality defect identifi-
cation and removal practices combined with code analysis tooling to provide the strongest results
for building security into software and systems. Examples, such as the recent Apple bug, support
the need for strengthening code review. Heartbleed points to the need for validating that all re-
quirements are complete and fully implemented in the code. The five projects selected from the
SEI TSP database demonstrated that producing products with very few operational issues requires
an integration of quality reviews for defect removal, including security or safety-critical reviews
at every step of the lifecycle.

The effectiveness of quality practices, such as inspections, in finding defects depends on review-
ers who are knowledgeable in what could go wrong. The CISQ Quality Rules show that effective
security engineering decisions need to augment developer capabilities.

The SEI conducted a workshop in August 2014 with representatives from the organizations that
delivered TSP quality results as well as industry and federal acquisition, engineering, and security
experts interested in further analysis of these success stories. Their discussion, based on shared
experiences that support the need for increased quality as one means for improved software secu-
rity, led to the following insights:

 If you have a quality problem, then you have a security problem.

 Maybe up to 70% of CWEs are actually quality defects.

 Maturity levels are based on statistical samples; quality requires continuous measurement of
everything to catch problems early.

 If something is important, then you have to figure out a way to measure it; quality has estab-
lished an intensive metrics-collection process for all aspects of the lifecycle and security can
leverage many of these same metrics, but doing so requires investment in extensively tooling
the processes used to acquire, develop, validate, and implement systems.

 Effective measurements require planning to understand what to measure and what the
measures tell you; then you can track results and understand when your efforts are or are not
achieving intended outcomes.

 Quality and security use the same automated tools and testing approaches but the focus is
different:

 For quality, the level of defects is an indicator of code quality; testing is not for finding

bugs, but for confirming quality.

 For security, the tools are used in testing to point to specific problems and many false

positives result in wasted time researching non-problems.

 Quality approaches instill personal accountability at each stage of the lifecycle; the enter-
prise must clearly define what “right” looks like and then measure and reward the right be-
haviors, which are reinforced by training, tracking, and independent review.

CMU/SEI-2014-TN-026 | 30

Our research suggests that implementing systems with effective operational security requires in-
corporating both quality and security considerations throughout the lifecycle. Predicting effective
operational security requires quality and reliability evidence and security expert analysis at each
step in the lifecycle. If defects are measured, from 1-5% of them should be considered to be secu-
rity vulnerabilities. It is also feasible that when security vulnerabilities are measured, then code
quality can be estimated by considering them to be 1-5% of the expected defects.

6.1 Next Steps

Further evaluation of systems is needed to see if the patterns suggested by our analysis continue to
hold. We explored several options to expand our sample size, but found limited data about defects
and vulnerabilities assembled in a form that could be readily analyzed. This analysis must be done
for each unique version of a software product. At this point in time, evaluation of each software
product requires careful review of each software change and reported vulnerability. The review
not only matches up defects with source code versions, but also reviews each vulnerability re-
ported against the product suite to identify defects specific to the selected product version by pars-
ing available description information and identifying operational results for the same source code.
Collection of data about each product in a form that supports automation of this analysis would
greatly speed confirmation.

CMU/SEI-2014-TN-026 | 32

In 2007 and 2008, Omar Alhazmi and colleagues investigated the relationship directly, and re-
ported measures of vulnerabilities and defects in versions of Windows and Linux operating sys-
tems [Alhazmi 2007, 2008]. Table 6 illustrates their findings.

Table 6: Vulnerability Density Versus Defect Density Measured for Some Software Systems

Systems MSLOC Known
Defects

Known Defect
Density (per
KSLOC)

Known
Vulnerabilities

VKD (per
KSLOC)

VKD/DKD
Ratio (%)

Release
Date

Windows 95 15 5000 0.3333 50 0.0033 1.00 Aug 1995

Windows 98 18 10000 0.5556 84 0.0047 0.84 Jun 1998

Windows XP 40 106500 2.6625 125 0.0031 0.12 Oct 2001

Windows NT 16 10000 0.625 180 0.0113 1.80 Jul 1996

Win 2000 35 63000 1.80 204 0.0058 0.32 Feb 2000

Table 7 depicts the results of a 2006 study by Andy Ozment and Stuart Schechter that reported an
overall vulnerability density of 6.6 Vuls/MLOC (new and changed LOC) in OpenBSD versions
2.3 through 3.7 [Ozment 2006]. The vulnerability densities are comparable to the vulnerability
densities reported by Omar Alhazmi and Yashwant Malaiya for Linux 6.2 [Alhazmi 2008]. Table
8 depicts the results of the 2008 study conducted by Alhazmi and Malaiya.

CMU/SEI-2014-TN-026 | 34

Conclusions from the Literature

The NVD, CVE, and CWE are imperfect tools for research since the goal is for volunteers to rec-
ord the known vulnerabilities rather than research. The data are often incomplete, redundant, or
ambiguous and requires manual coding. Nonetheless, the data provide a useful starting point not
only for practitioners, but researchers as well. Common vulnerabilities continue to be associated
with coding and design defects of known types, and these vulnerabilities could be identified and
removed earlier in the development process. Because these defects are rare—typically in the range
of 0.002 to 0.006 per thousand lines of code—the counts may have high uncertainty. The uncer-
tainty is compounded by the observation that vulnerability counts are only for those vulnerabili-
ties so far discovered. This, in turn, is related to the use of the system and the motivation of users
and hackers to discover the vulnerabilities. Moreover, lines of code to implement similar capabil-
ity can vary substantially between systems depending on computing language and coding stand-
ards.

Given the sources of uncertainty, and the wide ranges in defect and vulnerability density, the ratio
of vulnerabilities to defects is expected. Nonetheless, the association is plausible and appears to
exist in practice. The measured vulnerability densities are consistent with vulnerability defect ra-
tios of between 0.3% and 10%. There are some hints that the lower end of this range represents
systems that have made greater use of security specific removal tools and development practices.

CMU/SEI-2014-TN-026 | 36

System test defect removal times are much greater because in this phase, the system—not a mod-
ule—is being tested. Simply identifying the defect can be time consuming, ranging from a few
minutes to weeks to determine the problem. After the problem is found, the defect must be fixed
and the system tested. This process increases makes the average defect removal time in system
test about two orders of magnitude more than the average defect removal times for phases before
integration and system test.

TSP guidelines suggest entering unit test with less than 5 defects per KLOC. 100,000 LOC would
have 2000 defects. To remove half of those defects would require approximately 20,000 task-
hours or 20 developer years. This effort is comparable to the cost of initial development. Entering
system test with twice that level of defects would require twice as long.

In a world with business constraints on both time and money, test will often end when time and
money are exhausted, not when all defects have been found.

Testing Is Ineffective

All defect removal activities have limits, and test is more limited than others. A problem with test
is that it has many dimensions. Code must be exercised (often for different input conditions), and
different paths (including error handling) must be checked. Covering lines of code, paths, and
conditions often explodes combinatorial. Exhaustive test cases are often impossible. Moreover, a
variety of conditions that stress the system must be tested as well.

Medium- and large-scale systems typically contain many defects, and these defects do not always
cause problems when the software systems are used precisely as tested. The tests, however, can-
not be comprehensive because large systems contain many components that operate under many
conditions. When systems are stressed in new ways, previously undiscovered defects are encoun-
tered. Therefore, under stressful conditions, these systems are least likely to operate correctly or
reliably. Figure 17 shows several of the conditions that can stress the program under operation.
The circle represents possible ways in which the system can be tested. The axes suggest possible
ways that the system can be stressed when testing functionality and performance. These include,
but are not limited to, configurations, hardware faults, input error, data errors, and resource con-
tentions. The tested region, presumably safe and secure, is depicted in green. The untested region
is potentially unsafe or not secure and is depicted in gray. Even a small system might require an
enormous number of tests to confirm correct operations under expected conditions. As systems
grow, the total number of possible conditions may be infinite. For any non-trivial system, the
tested area is small. Test, by necessity, focuses on the conditions most likely to be encountered
and most likely to trigger a fault in the system. Test, therefore, can only find a fraction of the de-
fects in the system. On the other hand, attackers may deliberately attempt to stress the system in
unconventional ways.

CMU/SEI-2014-TN-026 | 37

Figure 17: Notional Test Coverage Along Multiple Dimensions

Estimates for the effectiveness of testing be found in Capers Jones’ book on the economics of
software quality [Jones 2011]. Jones reports observed limits to test efficacy (low, medium, and
high).

Table 9: Typical Defect Removal Effectiveness

 Low Medium High

Unit Test 25% 35% 55%

New Function Test 30% 40% 55%

Regression Testing 25% 35% 45%

Integration Test 25% 55% 95%

System Test 25% 55% 95

Stress or Capacity Test 45% 65% 90%

Performance Test 70% 80% 95%

Jones reports that the total defect removal efficiency averages between 85% and 95% depending
upon size and domain. Defect potential ranges from two to nine defects per function point of size,
with larger products being more defect prone.

To mitigate these shortcomings, the beta test strategy has been widely adopted. In beta test, soft-
ware is operated by the intended users prior to release [Humphrey 2011]. This approach has been
very effective in identifying and fixing problems most likely to be encountered along the com-
monly executed paths, but the approach relies on the assumption that the user behavior is predict-
able. The result is a level of defects that users typically find acceptable. Attackers, however, stress
the system in unusual ways and target gaps in the test and unexpected paths. Test and beta test,
therefore, cannot be relied on to assure security.

CMU/SEI-2014-TN-026 | 38

Bibliography

URLs are valid as of the publication date of this document.

[Alhazmi 2007]
Alhazmi, Omar H.; Malaiya, Yashwant K.; & Ray, Indrajit. “Measuring, Analyzing and
Predicting Security Vulnerabilities in Software Systems.” Computers & Security 26, 3 (May
2007): 219–228. doi:10.1016/j.cose.2006.10.002

[Alhazmi 2008]
Alhazmi, Omar H. & Malaiya, Yashwant K. “Application of Vulnerability Discovery Models to
Major Operating Systems.” IEEE Transactions on Reliability 57, 1 (March 2008): 14–22.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4454142

[Anderson 2001]
Anderson, Ross. “Why Information Security Is Hard: An Economic Perspective,” 358-365. Pro-
ceedings of the Seventeenth Computer Security Applications Conference. IEEE Computer Society
Press, 2001. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=991552

[Anderson 2002]
Anderson, Ross. “Security in Open versus Closed Systems—The Dance of Boltzmann, Coase and
Moore,” 1–15. Proceedings of the Conference on Open Source Software: Economics, Law and
Policy. Toulouse, France, June 2002.

[Blanchette 2009]
Blanchette, S. Assurance Cases for Design Analysis of Complex System of Systems Software.
American Institute for Aeronautics and Astronautics (AIAA) Infotech@Aerospace Conference.
Seattle, Washington, April 2009. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setid=29062

[Binder 1997]
Binder, R. V. “Can a Manufacturing Quality Model Work for Software?” Software, IEEE
(September/October 1997): 102–103. doi:10.1109/52.605937

[Boehm 1981]
Boehm, B. W. Software Engineering Economics. Prentice-Hall, Inc., 1981.

[BSIMM 2013]
BSIMM. Building Security In Maturity Model. http://bsimm.com

[Butler 1991]
Butler, Ricky W. & Finelli, George B. “The Infeasibility of Experimental Quantification of Life-
Critical Software Reliability,” 66-76. Proceedings of the ACM Symposium on Software for Criti-
cal Systems, New Orleans, 1991. http://dl.acm.org/citation.cfm?id=123054

CMU/SEI-2014-TN-026 | 39

[Carvalho 2014]
Carvalho, Marco; DeMott, Jared; Ford, Richard; & Wheeler, David A. “Heartbleed 101,” Security
& Privacy, IEEE 12, 4 (July-August 2014): 63-67. doi: 10.1109/MSP.2014.66

[Christey 2011]
Chistey, Steve. “2011 CWE/SANS Top 25 Most Dangerous Software Errors.” Common Weak-
ness Enumeration (CWE). http://cwe.mitre.org/top25/

[CISQ 2012]
Consortium for IT Software Quality. CISQ Specifications for Automated Quality Characteristic
Measures (CISQ–TR–2012–01). Consortium for IT Software Quality, 2012. http://it-cisq.org/wp-
content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf

[CNSS 2009]
Committee on National Security Systems. “Instruction No. 4009,” National Information Assur-
ance Glossary, June 2009.

[Davis 2003]
Davis, Noopur & Mullaney, Julia. The Team Software Process (TSP) in Practice: A Summary of
Recent Results (CMU/SEI-2003-TR-014). Software Engineering Institute, Carnegie Mellon Uni-
versity, 2003. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6675

[FDA 2011]
U.S. Department of Health and Human Services, Food and Drug Administration Center for De-
vices and Radiological Health Center for Biologics Evaluation and Research. General Principles
of Software Validation; Final Guidance for Industry and FDA Staff
http://www.fda.gov/downloads/MedicalDevices/.../ucm085371.pdf

 [NIST 2002]
National Institute of Standards and Technology. “Federal Information Security Management Act
of 2002.” Vol. 48, 2002.

[Heffley 2004]
Heffley, Jon & Meunier, Pascal. “Can Source Code Auditing Software Identify Common
Vulnerabilities and Be Used to Evaluate Software Security?” Proceedings of the 37th Hawaii
International Conference on System Sciences, January 2004.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8934

[Hoglund 2004]
Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code. Boston: Addison‐
Wesley, 2004. http://www.informit.com/store/exploiting-software-how-to-break-code-
9780201786958

CMU/SEI-2014-TN-026 | 40

[Humphrey 2000]
Humphrey, Watts S. The Team Software Process (TSP) (CMU/SEI-2000-TR-023). Software
Engineering Institute, Carnegie Mellon University, 2000.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5287

[Humphrey 2011]
Humphrey, Watts S. & Over, James W. Leadership, Teamwork, and Trust. Addison-Wesley Pro-
fessional, 2011. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30368

[Jones 2011]
Jones, Capers & Oliver Bonsignour. The Economics of Software Quality. Addison-Wesley Profes-
sional, 2011. http://www.informit.com/store/economics-of-software-quality-9780132582209

[Jones 2012]
Jones, Capers. “Software Quality in 2012: A Survey of the State of the Art.” Nancook Analytics
LLC (May 2012). http://sqgne.org/presentations/2012-13/Jones-Sep-2012.pdf

[Kelly 1998]
Kelly, Tim P. “Arguing Safety.” PhD diss., University of York, 1998.

[Kelly 2004]
Kelly, Tim & Weaver, Rob. “The Goal Structuring Notation: A Safety Argument Notation.” Pro-
ceedings of International Workshop on Models and Processes for the Evaluation of COTS Compo-
nents (MPEC 2004). Edinburgh, Scotland, May 2004. IEEE Computer Society, 2004.

[Kupsch2014]
Kupsch, James A. & Miller, Barton P. Why Do Software Assurance Tools Have Problems Finding
Bugs Like Heartbleed? (WP003). Software Assurance Marketplace, April 2014. https://continu-
ousassurance.org/swamp/SWAMP-Heartbleed.pdf

[Li 2006]
Li, Zhenmin; Tan, Lin; Wang, Xuanhui; Lu, Shan; Zhou, Yuanyuan; & Zhai, Chengxiang. “Have
Things Changed Now? An Empirical Study of Bug Characteristics in Modern Open Source
Software,” 25-33. Proceedings of ASID ’06, 1st Workshop on Architectural and System Support
for Improving Software Dependability, New York, New York, 2006.
doi:10.1145/1181309.1181314

[Martin 2014]
Martin, Robert A. “Non-Malicious Taint Bad Hygiene Is as Dangerous to the Mission as
Malicious Intent.” CrossTalk, 2 (March/April 2014): 4–9.

[McGraw 2014]
McGraw, Gary. “Software [In]security and Scaling Automated Code Review,” TechTarget.com
(January 2014).
http://searchsecurity.techtarget.com/opinion/McGraw-Software-insecurity-and-scaling-auto-
mated-code-review

CMU/SEI-2014-TN-026 | 41

[MITRE 2014]
MITRE. “The Common Weakness Enumeration (CWE) Initiative” [accessed December 2014]
https://cwe.mitre.org/

[Nichols 2012]
Nichols, William R. “Plan for Success, Model the Cost of Quality.” Software Quality Professional
14, 2 (March 2012): 4-11.

[OMG 2013]
Object Management Group. “How to Deliver Resilient, Secure, Efficient, and Easily Changed IT
Systems in Line with CISQ Recommendations,” Object Management Group, 2013.
http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf

[Open Group 2014]
Open Group. “Mitigating Maliciously Tainted and Counterfeit Products.” Open Trusted Technol-
ogy Provider Standard (O-TTPS), Version 1.0. https://www2.opengroup.org/ogsys/catalog/C139

[Ozment 2006]
Ozment, Andy & Schechter, Stuart E. “Milk or Wine: Does Software Security Improve with
Age?” 93–104. Proceedings of the 15th Usenix Security Symposium, Vancouver, B.C., Canada,
July-August 2006. https://www.usenix.org/legacy/events/sec06/index.html

[Pan 1999]
Pan, Jiantao. Software Reliability. http://users.ece.cmu.edu/~koopman/des_s99/sw_reliability/

[Ratnaraj 2012]
Ratnaraj, David Y. “Excellence - Methodology Assists, Discipline Delivers.” Proceedings of the
2012 TSP Symposium, St. Petersburg, Florida, September 2012.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=298076

[Rombach 2008]
Rombach, Dieter; Münch, Jürgen; Ocampo, Alexis; Humphrey, Watts S.; & Burton, Dan. “Teach-
ing Disciplined Software Development.” Journal of Systems and Software 81, 5 (May 2008):
747–763. doi:10.1016/j.jss.2007.06.004

[Romo 2013]
Romo, Lawrence G. “Selective Service System.” Annual Report to the Congress of the United
States, 2013.

[Rubens 2014]
Rubens, Paul. “7 Reasons Not to Use Open Source Software,” CIO (February 2014).
http://www.cio.com/article/2378859/open-source-tools/7-reasons-not-to-use-open-source-soft-
ware.html

CMU/SEI-2014-TN-026 | 42

[Seshagiri 2012]
Seshagiri, Girish. “High Maturity Pays Off: It Is Hard to Believe Unless You Do It” Crosstalk 25,
1 (January/February 2012): 9-14. http://www.crosstalkonline.org/storage/issue-ar-
chives/2012/201201/201201-Seshagiri.pdf

[Shin 2011]
Shin, Yonghee & Williams, Laurie. “Can Traditional Fault Prediction Models Be Used for Vul-
nerability Prediction?” Empirical Software Engineering 18 (December 2013): 25–59.
doi:10.1007/s10664-011-9190-8

[Shull 2013]
Shull, Forrest. “A Lifetime Guarantee.” IEEE Software 30, 6 (November 2013): 4-8.
doi:10.1109/MS.2013.119

[Younis 2012]
Younis, Awad A. & Malaiya, Yashwant K. “Relationship Between Attack Surface and Vulnera-
bility Density: A Case Study on Apache HTTP Server,” 197–203. Proceedings of the Interna-
tional Conference on Internet Computing (ICOMP'12). Las Vegas, Nevada, July 2012.
http://www.worldacademyofscience.org/worldcomp12/ws/conferences/icomp12

CMU/SEI-2014-TN-026 | 43

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2014

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Predicting Software Assurance Using Quality and Reliability Measures

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Carol Woody, Robert Ellison, & William Nichols

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2014-TN-026

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Security vulnerabilities are defects that enable an external party to compromise a system. Our research indicates that improving software
quality by reducing the number of errors also reduces the number of vulnerabilities and hence improves software security. Some portion of
security vulnerabilities (maybe over half of them) are also quality defects. This report includes security analysis based on data the Software
Engineering Institute (SEI) has collected over many years for 100 software development projects. Can quality defect models that predict qual-
ity results be applied to security to predict security results? Simple defect models focus on an enumeration of development errors after they
have occurred and do not relate directly to operational security vulnerabilities, except when the cause is quality related. This report discusses
how a combination of software development and quality techniques can improve software security.

14. SUBJECT TERMS

Measurement, security, quality, software, software assurance

15. NUMBER OF PAGES

59

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

